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Abstract 
 
  Pultruded Fiber-reinforced plastic (FRP) structural shapes (beams and columns) are thin-walled 
open or closed sections consisting of assemblies of flat panels and commonly made of E-glass fibers and 
polyester or vinylester resin.  Due to the high strength-to-stiffness ratio of composites and thin-walled 
sectional geometry of FRP shapes, buckling is the most likely mode of failure before material failure.  In 
this paper, explicit analyses of local buckling of rectangular composite plates with various unloaded 
edge boundary conditions (i.e., (1) rotationally restrained elastically along both unloaded edges and (2) 
one rotationally restrained and other free along the unloaded edges) and subjected to uniform in-plane 
axial action at simply supported loaded edges are presented.  A variational formulation of the Ritz 
method is used to establish an eigenvalue problem, and by using combined harmonic and polynomial 
buckling deformation functions for box section and linearly combining the displacement fields of two 
extreme cases of simply-free and clamped-free boundary conditions for I-section, explicit solutions of 
plate local buckling coefficients are obtained.  The two cases of elastically rotationally restrained plates 
are further treated as discrete plates or panels of fiber-reinforced plastic (FRP) closed and open sections, 
and by considering the effect of elastic restraints at the joint connections of flanges and webs, the local 
buckling strength of FRP shapes is predicted.  The theoretical predictions are in good agreements with 
transcendental solutions and finite element eigenvalue analyses for local buckling of FRP columns.  The 
present explicit formulation can be applied to determine local buckling capacities of composite plates 
with elastic restraints along the unloaded edges and can be further used to predict the local buckling 
strength of FRP shapes. 
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Introduction 
 

 Fiber-reinforced plastic (FRP) structural shapes (beams and columns) are increasingly used in 
civil infrastructure applications [1].  The common FRP shapes are thin-walled sections consisting of 
assemblies of flat panels and made of E-glass fibers and polyester or vinylester resin using pultrusion 
process.  Due to the thin-walled sectional geometry and relatively low stiffness of FRP shapes, problems 
associated with local buckling are common in current design of FRP shapes [2].   
  In general, the local buckling analyses of FRP shapes are accomplished by modeling the flanges 
and webs individually and considering the flexibility of the flange-web connections.  In this type of 
simulation, each part of FRP shapes is modeled as a plate subjected to elastic restraints along the 
unloaded edges (i.e., the flange-web connections) [2].  An extensive review of research on composite 
plate buckling behavior has been presented by Turvey and Marshall [3], and applications of discrete 
plate analyses for local buckling of FRP shapes have been reviewed and studied by Qiao et al. [2].  Even 
though significant research on local buckling of composite plates is presented in the literature, there are 
no simple and explicit formulations available for local buckling of elastically restrained plates, which 
can be further applied to predict the local buckling strength of FRP shapes. 
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 In this paper, the explicit solutions for local buckling of FRP plates elastically restrained along 
the unloaded edges are considered, and two types of commonly used pultruded FRP shapes, an I-section 
and a box-section, are analyzed.  For a box-section (Figure 1), the flange can be modeled as an 
anisotropic plate connected to the webs and under uniformly distributed compression loading on two 
opposite edges.  Similarly, the flange of an FRP I-beam is simulated as a plate element with appropriate 
conditions as illustrated in Figure 2. By using combined harmonic and polynomial buckling deformation 
functions for box section and linearly combining the displacement fields of two extreme cases of 
simply-free and clamped-free boundary conditions for I-section, a variational approach of the Ritz 
method is used to establish an eigenvalue problem, and explicit solutions for local buckling of two types 
of elastic restrained plates (see Figures 1 and 2) are obtained.  By considering the effect of elastic 
restraints at the flange-web joint connections of thin-walled sections, the explicit formulas of local 
buckling of elastically restrained plates are applied for prediction of local buckling strength of FRP 
shapes.  The explicit predictions are compared with the exact transcendental solutions and finite element 
analyses of FRP sections. 
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Figure 1. Geometry of idealized panel of box-section 

 
Variational Formulation for Local Buckling of Elastically Restrained  

Orthotropic Plates 
  

The local buckling of an orthotropic plate subjected to uniform in-plane axial load along the 
simply supported edges  and rotationally restrained at two unloaded edges is briefly presented in this 
section.  A variational formulation of the Ritz method is used herein to analyze the elastic buckling of an 
orthotropic plate with the boundary conditions shown in Figures 1 and 2.  In the variational form of the 
Ritz method used in this study, the first variations of the elastic strain energy stored in the plate ( eUδ ), 
the strain energy stored in the elastic restraints along the rotationally restrained boundaries of the plate 
( ΓUδ ), and the work done by the axial in-plane force ( Vδ ) are computed by properly chosen out-of-
plane buckling displacement function (w).  The elastic strain energy in an orthotropic plate (Ue) is given 
as  
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where Dij (i, j = 1, 2, 6) are the plate bending stiffness coefficients [4] and Ω is the area of the plate.   
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Figure 2. Geometry of idealized flange panel of wide-flange I-section 

 
For the plate with rotational restraints distributed along the unloaded boundary edges, the strain 

energy ( ΓU ) stored in equivalent elastic springs at the flange-web connections is given as 
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where Lk  and Uk  in Eq. (2) are the rotational stiffness at the edges of y = 0 and b (Figure 1), and k in 
Eq. (3) is the rotational stiffness of the web and the flange-web connection combined (Figure 2).  Then, 
the corresponding first variations of strain energy stored in the elastic restraints along the rotationally 
restrained boundary of the plate ( ΓUδ ) are 
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The work done (V) by in-plane uniformly distributed compressive force (Nx) can be written as  

dxdywNV xx
2
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where xN  is defined as the compressive force per unit length at the simply supported boundary of x = 0 
and a. 

 
Explicit Solutions for Local Buckling 

 
To solve the eigenvalue problem, it is very important to choose proper out-of-plane buckling 

displacement function (w).  In this paper, to explicitly obtain the analytical solutions for local buckling 
of two types of representative plates corresponding to the box and I sections, respectively, (see Figures 1 
and 2), the unique buckling displacement fields are proposed.   

As shown in Figure 1, the boundary conditions along rotationally restrained unloaded edge are 
written as 
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While as shown in Figure 2, the boundary conditions along the flange-web connection or 
rotationally restrained unloaded edge are written as 
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The assumed plate displacement function which satisfy all the restrained boundary conditions 
shown in Figure 1 is stated as 
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where, χL and χU are the coefficients of elastic restraint at the unloaded edges (y = 0 and b, respectively) 
and expressed as: 

2222 /,/ DbkDbk UULL == χχ                                              (10) 
and noting that Lk  and Uk  are all positive values, as given in Eq. (9); )0or( 0  or  == ULUL kkχχ  
corresponds to the simply-supported boundary at rotationally restrained edges of y = 0 or y = b;  
whereas, )or(   or  ∞=∞= ULUL kkχχ correspond to the clamped boundary at rotationally restrained 
edges.  

As shown in Figure 2 for the discrete plate (flange) of I-sections, a new buckling displacement w 
which linearly combines the simply-free (SF) and clamped-free (CF) boundary buckling displacements 
and satisfies all the restrained boundary conditions is proposed as 
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As given in Eq. (11), k = 0 (simply-supported at rotationally restrained edge) corresponds to the 
plate with the SF boundary condition along the unloaded edges; whereas, k = ∞  (clamped at rotationally 
restrained edge) refers to the one with the CF boundary condition.  For 0 < k < ∞ , the restrained-free 
(RF) condition at unloaded edges is taken into account in the formulation. 

By substituting Eq. (9) into Eqs. (1), (2) and (6), the elastic strain energy in the plate ( eU ), strain 
energy in the elastic restraints along the rotationally restrained boundary of the plate ( ΓU ), and work 
done by the axial in-plane compressive force (V ) are derived, respectively. By differentiating the total 
energy which is the sum of strain energy, restrained energy and work done under in-plane compressive 
loads leads to the solution of an eigenvalue problem of which order is simply a unity.  Hence after some 
numerical symbolic computation, the local buckling coefficient (see Figure 1) can be explicitly 
expressed as 
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where γ = a/b is the aspect ratio of the plate. The plate compressive local buckling load (Nx, see Figure 
1) (force per unit length) can be written in term of the local buckling coefficient as 
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By minimizing Eq. (12) with respect to the aspect ratio (γ = a/b) (i.e., 0/ =γβ dd ), the respective 
critical aspect ratio and critical local buckling coefficient can be established as 
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Noting that Eq. (16) is independent of the number of buckling half-wave length (m).  Finally, the 
critical local buckling load or the critical local buckling stress resultant for orthortropic plates with the 
rotationally restrained-restrained (RR) condition (for the plate with loading and boundary conditions 
shown in Figure 1) can be expressed as 
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Similarly, by substituting Eq. (11) into Eqs. (1), (3) and (6) and after some numerical symbolic 
computation, the local buckling coefficient for the plate with the loading and boundary conditions 
shown in Figure 2 can be explicitly expressed as 
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and γ = a/b is the aspect ratio of the plate, and ξ is the coefficient of elastic restraint which depend on the 
properties of flange-web connection [2].  Again, ξ = ∞  (or ω = 0 and k = 0) is for the case of the plate 
simply-supported at the rotationally restrained unloaded edge; whereas, ξ = 0 (or ω = 1 and k = ∞ ) is for 
the one clamped.   

By minimizing Eq. (18) with respect to the aspect ratio (γ = a/b) (i.e., 0/ =γβ dd ), the respective 
critical aspect ratio and critical local buckling coefficient can be established as 
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Noting that Eq. (21) is independent of the number of buckling half-wavelength (m).  Finally, the critical 
local buckling load or the critical stress resultant for orthotropic plates with the RF condition (for the 
plate condition shown in Figure 1) can be expressed as 
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or explicitly in term of the coefficient of elastic restraint (ξ),  
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Based on the explicit formulas in Eqs. (17) and (22), design formulas of critical local buckling 
load for several common cases of applications are summarized as follows: 
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Case 1: Plates with two simply-supported unloaded edges (SS) 
For the case of 0and 0)(0 ===== σχχ ULUL kk  (i.e., the four edges are simply-supported 

and the plate is subjected to an uniformly distributed compression load in x-direction) (Figure 1), the 
explicit critical local buckling load can be simplified as 

)}2({742.19
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b
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Eq. (24) is identical to the one reported by Qiao et al. [2]. 
 
Case 2: Plates with two clamped unloaded edges (CC) 

For the case of 0and )or ( =∞==∞== σχχ ULUL kk  (i.e., the two unloaded edges at y = 0 and 
b are clamped and the plate is subjected to uniformly distributed compressive load at simply supported 
edges of x = 0 and a) (Figure 1), the explicit critical buckling load can be simplified as 

)}2(871.1{24
661222112 DDDD

b
Ncr ++=                                          (25) 

 
Case 3: Plates with two equal rotational restraints along unloaded edges (RR) 

For the case of 0and )( ===== σχχχ kkk ULUL  (i.e., the two unloaded edges at y = 0 and y 
= b are subjected to the same rotational restraints, and the plate is simply-supported and subjected to the 
uniformly distributed compression load at the edges of x = 0 and x = a) (Figure 1), the explicit critical 
local buckling load is given as 
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where, the coefficients of τ1, τ2, and τ3 are functions of elastic restraint coefficient χ , and defined as 
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Case 4: Plates with simply-supported and free unloaded edges (SF) 

For the case of ∞=ξ , the simply-supported boundary at one unloaded edge is achieved. The 
problem is corresponding to the plate under the uniformly distributed compression load at simply-
supported loaded edges and subjected to the SF boundary conditions (Figure 2), and the local buckling 
[ ∞

crxN )( ] can be obtained as 
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Case 5: Plates with clamped-supported and free unloaded edges (CF) 

For the case of 0=ξ , the boundary is related to clamped-supported at one unloaded edge and 
free at another unloaded edge (CF condition) (Figure 2), and the local buckling load can be obtained as 
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Case 6: Plates with elastically retrained and free unloaded edges (RF) 

The formula for the local buckling load of the general case of elastically restrained at one 
unloaded edge and free at the other (RF) (Figure 2) is given in Eq. (23). 
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Determination of Restraint Coefficient 
 

The non-dimensional coefficient of elastic restraint χ in Case 3 need to be determined so that the 
critical buckling stress resultants crN  can be predicted.  As shown in Figure 1 for the box-sections, the 
webs are assumed to elastically restrain the flanges, and based on the derivations for the isotropic case 
[5] and orthotropic case [2], the rotational restraint coefficient for the box-sections is modified as  
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and the superscripts f and w refer to the flange and web panels.  χ = 0 and χ = ∞  correspond to the 
elastic restraints of simply supported (Case 1) and fully restrained (clamped) (Case 2) boundary 
conditions, respectively.   

Similarly, the non-dimensional coefficient of elastic restraint (ξ) for I-sections (Figure 2), can be 
expressed in terms of the material and geometrical properties of the flange and web as [2, 5]: 
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Using the coefficient of elastic restrain in Eq. (32), the local buckling load for Case 6 can be determined.  
Again, ξ = ∞  and ξ = 0 correspond to the elastic restraints of simply supported (Case 4) and fully 
restrained (clamped) (Case 5) boundary conditions at the flange-web connection, respectively.   

 
Application to Local Buckling of FRP Shapes 

 
Box-sections 

As an application, the proposed formula [Eq. (17)] is applied for the local buckling predictions of 
four FRP box-sections (10.2×20.3×0.64 cm, 10.2×15.2×0.64 cm, 10.2×10.2×0.64 cm, and 
15.2×15.2×0.95 cm).  The panel material properties and corresponding elastic restraints are given in 
Table 1.  Due to equal lengths of flanges and webs in the box-sections of 10.2×10.2×0.64 cm and 
15.2×15.2×0.95 cm, the elastic restraint coefficients χ = 0, and they indicate that the panels of two 
sections can be simplified as simply-supported plates along the unloaded edges (Case 1) and the flange 
and web panel components are buckled simultaneously.  The present explicit solutions are compared 
with the exact solutions by solving the transcendental equations [2] and the finite element eigenvalue 
analyses by using ANSYS four-node layered shell element (SHELL 63) (Table 2), and an excellent 
agreement between the propsed explicit formula [Eq. (17)] and transcendental solutions is obtained. 
Further, the relationship of flange critical local buckling load with respect to the coefficient of elastic 
restraint (χ) for box-section 10.2×20.3×0.64 cm is plotted in Figure 3; while the local buckling load 
versus the aspect ratio (γ) of span length to width with different coefficients of elastic restraint is shown 
in Figure 4. It indicates that the actual value of the critical local buckling load of panel elements with 
consideration of elastic restraint of the flange-web connection lies between the simply-supported and 
fully restraint (clamped) conditions (See Table 2 and Figure 3).  Also as demonstrated in Figure 4, the 
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local buckling load increases as the coefficient of elastic restraint increases.  For the plates with lower 
aspect ratios, the difference of local buckling loads between the simply-supported and clamped 
conditions diminishes.   

 
Table 1. Flange Panel Bending Stiffness and Elastic Restraint Coefficients for Box-Sections 

 
Section 

(cm) 
D11 

(N.cm) 
D12 

(N.cm) 
D22 

(N.cm) 
D66 

(N.cm) 
χ 

10.2×20.3×0.64 44,370 10,340 46,070 10,680 4.271 
10.2×15.2×0.64 46,860 13,770 35,000 10,740 2.934 
10.2×10.2×0.64 46,860 13,770 35,000 10,740 0 
12.7×12.7×0.95 164,800 29,240 101,400 28,000 0 
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Figure 3. Effect of coefficient of elastic restraint on critical local buckling load for FRP box-section  
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Figure 4. Effect of aspect ratio on critical local buckling load for FRP box-section  



 10 

Table 2. Comparisons of Critical Local Buckling Stress Resultants for Four Box-Sections 
 

Section 
(cm) 

Explicit 
Solution 
(N/cm) 

Transcendental 
Solution (TS) 

(N/cm) 

FEM 
(N/cm) 

Percent 
Difference (%) 
(Explicit vs TS) 

Percent Difference 
(%) 

(Explicit vs EM) 
10.2×20.3×0.64 4,773 4,768 4,810 0.105 -0.769 
10.2×15.2×0.64 7,814 7,805 7,740 0.115 0.956 
10.2×10.2×0.64 14,450 14,449 14,030 0.007 3.000 
12.7×12.7×0.95 26,860 26,748 26,090 0.419 3.000 

 
I-sections 

As an application, the formulated explicit formula [Eq. (23)] is used to predict the local buckling 
strengths of four pultruded FRP wide-flange (WF) sections loaded axially as columns.  These WF 
sections were experimental studied by Barbero [6].  The flange local buckling of each WF section is 
predicted using the present explicit formula, and the results are correlated with experimental data [6], 
transcendental solutions [2], and finite element eigenvalue simulations.  The flange material properties 
[6] of the sections are listed in Table 3, and the coefficients of elastic restraint are computed using Eq. 
(32) (see Table 4). As indicated in Table 4, the present explicit solutions of critical stress resultants 
compare closely with theoretical predictions by transcendental solutions, experimentally measured 
values and finite element eigenvalue analytical results.  Also as illustrations, the local buckling 
coefficient (β) versus the aspect ratio (γ) with different coefficients of elastic restraint is provided in 
Figure 5; while the flange local buckling pattern along with the experimental data and finite element 
predictions is shown in Figure 6 for WF-section 102 × 102 × 6.6 mm with the corresponding elastic 
restraints of 70.6=ξ .  Based on Table 4, it can be concluded that the present explicit solution is highly 
accurate and can be used with confidence in local buckling design of FRP WF-sections. 

 
Table 3. Flange Panel Bending Properties for Four WF-sections 

 

)(
Section

mm
 

)(
11

cmN
D
⋅

 
)(

12

cmN
D
⋅

 
)(

22

cmN
D
⋅

 
)(

66

cmN
D
⋅

 

102×102×6.4 69,823 12,739 32,633 10,329 
152×152×6.4 75,112 14,138 35,533 11,234 
152×152×9.5 243,600 41,400 106,511 34,465 
203×203×9.5 250,080 41,575 107,090 34,710 

 
Table 4. Comparisons of Critical Stress Resultants for Four WF Sections 

 

(mm)
Section

 

 )(
restraint
Elastic

ξ
 )/(

)( .Trans

cmN
N crx

 
)/(

)( FEM

cmN
N crx

 
)/(

)( Exp.

cmN
N crx

 
)/(

)( Present

cmN
N crx

 

Percent 
Difference (%) 

(Explicit vs 
FEM) 

Percent 
Difference (%) 

(Explicit vs 
Exp.) 

102×102×6.4 6.70 8,044 8,235 8,056 8,283 3.0 2.8 
152×152×6.4 6.70 3,923 3,882 3,925 4,045 3.1 3.1 
152×152×9.5 6.44 12,255 11,886 12,805 12,635 3.1 -1.3 
203×203×9.5 6.44 6,959 6,568 6,668 7,167 3.0 7.0 

Note: Trans – transcendental solutions; FEM – Finite element method; Exp. – Experimental results. 
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Figure 5. Local buckling coefficient vs. aspect ratio for FRP WF-section  
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Figure 6. Flange local buckling of WF-section with ξ = 6.70 

 
Conclusions 

 
An explicit elastic stability analysis is presented for local buckling of orthotropic plates 

rotationally restrained elastically along unloaded edges and subjected to uniform axial loading, and the 
analytical solutions are extended to predict the local buckling strength of elastically restrained laminated 
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flange panels of FRP box-sections and wide-flange I-sections with elastic rotational restraints at the 
flange-web connections. By combining the harmonic and polynomial buckling deformation functions 
which are satisfied all the restraint boundary conditions, the effects of elastic restraints along the 
unloaded or at the flange-web connection are considered for the box-sections.  By linearly combining 
the displacement fields of two extreme cases of simply-free and clamped-free boundary conditions, a 
new buckling displacement field for rotationally restrained-free boundary condition at the unloaded 
edges is developed for the wide-flange sections. A variational formulation of the Ritz method is used to 
establish an eigenvalue problem, and a simplified explicit flange local buckling loads for the box-
sections and wide-flange sections are derived.  The predictions by present explicit formulas are 
compared well with the transcendental solutions and finite element eigenvalue simulations for local 
buckling of FRP box and wide-flange sections.  The explicit formulas of critical local buckling strength 
can be easily applied in local buckling design of FRP structural shapes. 
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